Coupling of electron spins (red) to radiation (green). Illustration: Dr M. Benito

B06 – Coherent optical spin and charge control in nanostructures

Funding period: 03/2009 – 12/2019

Principal investigator: Guido Burkard

Scientific staff: Adrian Auer, Monica Benito, Matthew Brooks, Benjamin D'Anjou, Alessandro David, Matthias Droth,  Florian Ginzel, Julia Hildmann, Matthias Kizmann, Andor Kormanyos, Thiago Lucena de Macedo Guedes, Jonas Mielke, Andrey Moskalenko, Philipp Mutter, Alexander Pearce, Csaba Géza Péterfalvi, Marko Rancic, Hugo Ribeiro, Julien Rioux,  Niklas Rohling, Maximilian Russ, Vladislav Shokolnikov, Phillip Struck, Heng Wang, Erik Welander

Illustration of a gate defined double quantum dot (DQD) occupied with two electron spins inside a large homogeneous magnetic field (not shown) and an inhomogeneous magnetic field B from a micromagnet.

We theoretically investigate the quantum coherent optical control of spin and charge degrees of freedom of single or few quantum objects in nanosystems. The nanosystems under study are quantum dots, defect centers with spin in diamond and silicon carbide, and semiconductor or metal nanogaps. The main goals of the project are the theoretical description of ultrafast photon-induced electric transport through nanogaps, the understanding of ultrafast optical control of charge and spin degrees of freedom of localized electrons in nanostructures, the controlled optical generation of spin- and valley-polarized carriers in nanostructures based of two-dimensional materials, optical preparation and detection of nuclear spin states in semiconductor nanostructures, and steps towards long-distance entanglement between spins.


For further information please also refer to the group website: LS Burkard

List of publications

2019

  •  M. Kizmann, T. Lucena de M. Guedes, D. V. Seletskiy, A. S. Moskalenko, A. Leitenstorfer and G. Burkard, Subcycle squeezing of light from a time flow perspective, Nature Physics 15, 960 (2019) - DOI:  10.1038/s41567-019-0560-2
  • G. Burkard, Quantum sound on a chip, Nature Nanotechnology 14, 311-312 (2019) - DOI: 10.1038/s41565-019-0391-4
  • Andrey S. Moskalenko, Timothy C. Ralph, Correlations detected in a quantum vacuum, Nature 568, 178-179 (2019) - DOI: 10.1038/d41586-019-01083-z
  • T. L. M. Guedes, M. Kizmann, D. V. Seletskiy, A. Leitenstorfer, G. Burkard, A. S. Moskalenko, Spectra of Ultrabroadband Squeezed Pulses and the Finite-Time Unruh-Davies Effect, Physical Review Letters 122, 053604 (2019) - DOI: 10.1103/PhysRevLett.122.053604
  • C. Mühlherr, V. O. Shkolnikov, G. Burkard, Magnetic resonance in defect spins mediated by spin waves, Physical Review B 99, 195413 (2019) - DOI: 10.1103/PhysRevB.99.195413

 

2018

  • P. Udvarhelyi, V. O. Shkolnikov, A. Gali, G. Burkard, A. Pály, Spin-strain interaction in nitrogen-vacancy centers in diamond, Physical Review B 98, 075201 (2018) - DOI: 10.1103/PhysRevB.98.075201
  • M. Russ, J.R. Petta, G. Burkard, Quadrupolar Exchange-Only Spin Qubit, Phys. Rev. Lett. 121, 177701 (2018) - DOI: 10.1103/PhysRevLett.121.177701
  • A. Kormányos, V. Zólyomi, V.I. Falko, G. Burkard, Tunable Berry curvature, valley and spin Hall effect in bilayer MoS2, arXiv: 1804.06830 (2018)
  •  M. Brooks, G. Burkard, Theory of strain-induced confinement in transition metal dichalcogenide monolayers, arXiv: 1803.09658 (2018)
  •  M. Russ, D.M. Zajac, AJ. Sigillito, F. Borjans, J.M. Taylor, J.R. Petta, G. Burkard, High-fidelity quantum gates in Si/SiGe double quantum dots, Phys. Rev. B 97, 085421 (2018) - DOI: 10.1103/PhysRevB.97.085421
  •  JV. Koski, AJ. Landig, A. Pályi, P. Scarlino, C. Reichl, W. Wegscheider, G. Burkard, A. Wallraff, K. Ensslin, T. Ihn, Floquet spectroscopy of a strongly driven quantum dot charge qubit with a microwave resonator, arXiv: 1802.03810 (2018)
  •  A. David, G. Burkard, A. Kormányos, Effective theory of monolayer TMDC double quantum dots, 2D Materials 5, 035031 (2018) - DOI: 10.108/2035-1583/aa17f
  •  D.M. Zajac, AJ. Sigillito, M. Russ, F. Borjans, J.M. Taylor, G. Burkard, J.R. Petta, Resonantly driven CNOT gate for electron spins, Science 359, 439 (2018) - DOI: 10.1126/science.aao5965
    Press release of the University of Konstanz

2017

  •   C.G. Péterfalvi, G. Burkard, Hyperfine-induced dephasing in three-electron spin qubits, Phys. Rev. B 96, 245412 (2017) DOI: 10.1103/PhysRevB.96.245412
  •  M. Benito, X. Mi, JM. Taylor, J.R. Petta, G. Burkard,  Input-output theory for spin-photon coupling in Si double quantum dots, Phys. Rev. B 96, 235434 (2017) - DOI: 10.1103/PhysRevB.96.235434
    University of Konstanz News Release: here
  • B.B. Zhou, P.C. Jerger, V.O. Shkolnikov, J.F. Heremans, G. Burkard, D.D. Awschalom.  Holonomic quantum control by coherent optical excitation in diamond, Phys. Rev. Lett. 119, 140503 (2017) - DOI:  10.1103/PhysRevLett.119.140503
  •  X. Mi, C.G. Péterfalvi, G. Burkard, J.R. Petta,  High resolution Valley spectroscopy of Si quantum dots, Phys. Rev. Lett. 119, 176803 (2017) - DOI: 10.1103/PhysRevLett.119.176803
  •  M. Russ, G. Burkard, Three-electron spin qubits (Topical Review), Journal of Physics: Condensed Matter 29 (39), 393001 (2017) - DOI: 10.1088/1361-648X/aa761f
  •  M. Brooks, G. Burkard, Spin-degenerate regimes for single quantum dots in transition metal dichalcogenide monolayers, Phys. Rev. B 95, 245411 (2017) - DOI: 10.1103/PhysRevB.95.245411
  • A.J. Pearce, G. Burkard,  Electron Spin relaxation in a transition-metal dichalcogenide quantum dot, 2D Materials 4, 025114 (2017) - DOI: 10.1088/2053-1583/aa7364
  • G. Nanda, JL. Aguilera-Servin, P. Rakyta, A. Kormányos, R. Kleiner, D. Koelle, K. Watanabe, T. Taniguchi, LMK. Vandersypen, S. Goswami, Current-phase relation of ballistic graphene Josephson junctions, Nano Letters  17, 3396 (2017) - DOI: 10.1021/acs.nanolett.7b00097
  • D. Schulze, A. Thakur, A.S. Moskalenko, J. Berakdar,  Accelerating, guiding, and sub-wavelength trapping of neutral atoms with tailored optical vortices, Annalen der Physik 529, 1600379 (2017) - DOI: 10.1002/andp.201600379
  • M.J. Rančić, G. Burkard, Ultracoherent operation of spin qubits with superexchange coupling, Phys. Rev. B 96, 201304(R) (2017) - DOI: 10.1103/PhysRevB.96.201304
  • G. Burkard, V.O. Shkolnikov, D.D. Awschalom,  Designing a cavity-mediated quantum CPHASE gate between NV spin qubits in diamond, Phys. Rev. B 95, 205420 (2017) - DOI: 10.1103/PhysRevB.95.205420
  • B.B. Zhou, A. Baksic, H. Ribeiro, C.G. Yale, J.F. Heremans, P.C. Jerger, A. Auer, G. Burkard, A.A. Clerk, D.D. Awschalom.  Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system, Nature Physics 13, 330 (2017) - DOI: 10.1038/nphys3967
  • C. Riek, P. Sulzer, M. Seeger, A.S. Moskalenko, G. Burkard, D.V. Seletskiy, A. Leitenstorfer, Subcycle quantum electrodynamics, Nature 541, 376 (2017) - DOI: 10.1038/nature21024
  • A.S. Moskalenko, Z.G. Zhu, J. Berakdar, Charge and spin dynamics in nanostructures driven by broadband ultrashort pulses: A theory perspective, Physics Reports 672, 1 (2017) - DOI: 10.1016/j.physrep.2016.12.005

2016 

  • M. Russ, F. Ginzel, G. Burkard,  Coupling of three-spin qubits to their electric environment, Phys. Rev. B 94, 165411 (2016)
  • M.J. Rančić, D. Stepanenko,  Coherent manipulation of single electron spins with Landau-Zener sweeps, Phys. Rev. B 94, 241301(R) (2016)
  • G. Burkard, J.R. Petta,  Dispersive readout of valley splittings in cavity-coupled silicon quantum dots, Phys. Rev. B 94, 195305 (2016)
  • H. Wang, G. Burkard,  Creating arbitrary quantum vibrational states in a carbon nanotube, Phys. Rev. B 94, 205413 (2016)
  • A.J. Pearce, E. Mariani, G. Burkard,  Tight-binding approach to strain and curvature in monolayer transition-metal dichalcogenides, Phys. Rev. B 94, 155416 (2016)
  • S.A. Tarasenko, G. Burkard,  Limitation of electron mobility from hyperfine interaction in ultraclean quantum wells and topological insulators, Phys. Rev. B 94, 045309 (2016)
  • G. Szechenyi, M. Vigh, A. Kormányos, J. Cserti,  Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures, J. Phys.: Condens. Matter 28, 375802 (2016)
  • N. Rohling, G. Burkard,  Optimizing electrically controlled echo sequences for the exchange-only qubit, Physical Review B 93, 205434 (2016)
  • M. Trappe, Y. Len, H. Ng, C.A. Müller, B. Englert,  Leading gradient correction to the kinetic energy for two-dimensional fermion gases, Phys. Rev. A 93, 042510 (2016)
  • A M. Waeber, M. Hopkinson, I. Farrer, D A. Ritchie, J. Nilsson, R M. Stevenson, A J. Bennett, A J. Shields, G. Burkard, A I. Tartakovskii, M S. Skolnick, E A. Chekhovich,  Few-second-long correlation times in a quantum dot nuclear spin bath probed by frequency-comb nuclear magnetic resonance spectroscopy, Nature Physics 12, 688 (2016)
  • A. Auer, R. Schwonnek, C. Schoder, L. Dammeier, R.F. Werner, G. Burkard. Entanglement distillation using the exchange interaction, Applied Physics B 122(3) (2016) - DOI: 10.1007/s00340-015-6286-7
  • C.G. Yale, J.F. Heremans, B.B. Zhou, A. Auer, G. Burkard, D.D. Awschalom. Optical manipulation of the Berry phase in a solid-state spin qubit, Nature Photonics 10, 184 (2016) - DOI: 10.1038/nphoton.2015.278
  • A. Auer, G. Burkard. Long-range photon-mediated gate scheme between nuclear spin qubits in diamond, Physical Review B 93, 035402 (2016) - DOI: 10.1103/PhysRevB.93.035402
  • M. Droth, G. Burkard. Spintronics with graphene quantum dots, Phys. Status Solidi RRL 10, 75-90 (2016) - DOI: 10.1002/pssr.201510182
  • M.J. Rančić, G. Burkard. Electric dipole spin resonance in systems with a valley dependent g-factor, Physical Review B 93, 205433 (2016) - DOI:  10.1103/PhysRevB.93.205433
  • M. Droth, G. Burkard, V.M. Pereira. Piezoelectricity in planar boron nitride via a geometric phase, Phys. Rev. B 94, 075404 (2016)

2015

  • M. Russ, G. Burkard. Asymmetric resonant exchange qubit under the influence of electrical noise, Phys. Rev. B 91, 235411 (2015) - DOI: 10.1103/PhysRevB.91.235411
  • C.G. Péterfalvi, A. Kormányos, G. Burkard. Boundary conditions for transition-metal dichalcogenide monolayers in the continuum model, Phys. Rev. B 92, 245443 (2015) - DOI: 10.1103/PhysRevB.92.245443
  • A.S. Moskalenko, C. Riek, D. Seletskiy, G. Burkard, A. Leitenstorfer. Paraxial Theory of Direct Electro-optic Sampling of the Quantum Vacuum, Physical Review Letters 115, 263601 (2015) - DOI: 10.1103/PhysRevLett.115.263601
  • H. Wang, G. Burkard. Mechanically induced two-qubit gates and maximally entangled states for single electron spins in a carbon nanotube, Phys. Rev. B 92, 195432 (2015) - DOI: 10.1103/PhysRevB.92.195432
  • A.J. Pearce, G. Burkard. A Tight Binding Approach to Strain and Curvature in Monolayer Transition-Metal Dichalcogenides, arXiv: 1511.06254 (2015)
  • N. Rohling, G. Burkard. Optimizing electrically controlled echo sequences for the exchange-only qubit, arXiv: 1510.04098 (2015)
  • C. Riek, D. Seletskiy, A.S. Moskalenko, JF. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, A. Leitenstorfer. Direct sampling of electric-field vacuum fluctuations, Science 350, 420 (2015) - DOI: 10.1126/science.aac9788
  • A. Kormányos, P. Rakyta, G. Burkard. Landau levels and Shubnikov–de Haas oscillations in monolayer transition metal dichalcogenide semiconductors, New J. Phys. 17, 103006 (2015) - DOI: 10.1088/1367-2630/17/10/103006
  • A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N.D. Drummond, V.I. Fal'ko. k·p theory for two-dimensional transition metal dichalcogenide semiconductors, 2D Materials 2, 022001 (2015) - DOI: 10.1088/2053-1583/2/4/049501
  • M. Evers, C.A. Müller, U. Nowak. Spin-wave localization in disordered magnets, Phys. Rev. B 92, 014411 (2015) - DOI: 10.1103/PhysRevB.92.014411
  • J. Romhányi, G. Burkard, A. Pályi. Subharmonic transitions and Bloch-Siegert shift in electrically driven spin resonance, Phys. Rev. B 92, 054422 (2015) - DOI: 10.1103/PhysRevB.92.054422
  • M. Droth, G. Burkard. Tuning antiferromagnetism of vacancies with magnetic fields in graphene nanoflakes, Phys. Rev. B 91, 115439 (2015) - DOI: 10.1103/PhysRevB.91.115439
  • SA. Tarasenko, G. Burkard. Limitation of electron mobility from hyperfine interaction in ultra-clean quantum wells, arXiv: 1508.07777 (2015)
  • P. Rakyta, A. Kormányos, J. Cserti. Magnetic field oscillations of the critical current in long ballistic graphene Josephson junctions, arXiv: 1512.03303 (2015)

2014

  • Bassett, Heremans, Christle, Yale, Burkard, Buckley, Ultrafast optical control of orbital and spin dynamics in a solid-state defect, Science 345, 1333 (2014) - DOI: 10.1126/science.1255541
  • N. Rohling, M. Russ, G. Burkard, Hybrid Spin and Valley Quantum Computing with Singlet-Triplet Qubits, Phys. Rev. Lett. 113, 176801 (2014) - DOI: 10.1103/PhysRevLett.113.176801
  • Auer, Burkard, Phys. Rev A 90, 022320 (2014)
  • Rioux, Sipe, Burkard, Phys. Rev. B 90, 115424 (2014)
  • Wang, Burkard, Phys. Rev. B 90, 035415 (2014)
  • Rioux, Burkard, Phys. Rev. B 90, 035210 (2014)
  • J. Hildmann, E. Kavousanaki, G. Burkard, H. Ribeiro, Quantum limit for nuclear spin polarization in semiconductor quantum dots, Phys. Rev. B 89, 205302 (2014) - DOI: 10.1103/PhysRevB.89.205302
  • M.O. Hachiya, G. Burkard, JC. Egues, Nonmonotonic spin relaxation and decoherence in graphene quantum dots with spin-orbit interactions, Phys. Rev. B 89, 115427 (2014)
    DOI: 10.1103/PhysRevB.89.115427
  • Struck, Wang, Burkard, Phys. Rev. B 89, 045404 (2014)
  • Hildmann, Burkard, Phys. Status Solidi B 251, 1938 (2014)
  • A. Kormányos, V. Zólyomi, N.D. Drummond, G. Burkard, Spin-Orbit Coupling, Quantum Dots, and Qubits in Monolayer Transition Metal Dichalcogenides, Phys. Rev. X 4, 011034 (2014)
    DOI: 10.1103/PhysRevX.4.011034

2013

  • A. Kormányos, V. Zólyomi, N.D. Drummond, P. Rakyta, G. Burkard, V.I. Fal'ko, Monolayer MoS2: trigonal warping, “Γ-valley” and spin-orbit coupling effects, Phys. Rev. B 88,045416 (2013)
    DOI: 10.1103/PhysRevB.88.045416 
  • Interplay of charge and spin coherence in Landau-Zener-Stückelberg-Majorana interferometry, Phys. Rev. B 87, 235318 (2013)
    DOI: 10.1103/PhysRevB.87.235318 </h.>
  • M. Droth and G. Burkard, Electron spin relaxation in graphene nanoribbon quantum dots, Physical Review B 87(20) 205432 (2013)
    DOI: 10.1103/PhysRevB.87.205432
  • CG. Yale, BB. Buckley, DJ. Christle, G. Burkard, FJ. Heremans, LC. Bassett, and DD. Awschalom, All-optical control of a solid-state spin using coherent dark states, Proceedings of the National Academy of Sciences 110 (19), 7595 (2013)
    DOI: 10.1073/pnas.1305920110
  • H. Ribeiro, G. Burkard, J.R. Petta, H. Lu, and AC. Gossard, Coherent Adiabatic Spin Control in the Presence of Charge Noise Using Tailored Pulses, Phys. Rev. Lett. 110, 086804 (2013)
    DOI: 10.1103/PhysRevLett.110.086804
  • A. Kormányos and G. Burkard, Intrinsic and substrate induced spin-orbit interaction in chirally stacked trilayer graphene, Phys. Rev. B 87, 045419 (2013)
    DOI:10.1103/PhysRevB.87.045419

2012

  • Rohling, Burkard,  New J. Phys. 14, 083008 (2012)
  • Pályi, Struck, Rudner,  Flensberg, Burkard, Phys. Rev. Lett. 108, 206811 (2012)
  • E. Welander and G. Burkard, Electric control of the exciton fine structure in nonparabolic quantum dots, Phys. Rev. B 86, 165312 (2012)
    DOI:10.1103/PhysRevB.86.165312
  • EG. Kavousanaki and G. Burkard, Signatures of spin blockade in the optical response of a charged quantum dot, Phys. Rev. B 86, 045122 (2012)
    DOI: 10.1103/PhysRevB.86.045122
  • A. Auer and G. Burkard, Entangled photons from the polariton vacuum in a switchable optical cavity, Phys. Rev. B 85, 235140 (2012)
    DOI: 10.1103/PhysRevB.85.235140
  • A. Pályi, P. R. Struck, Mark Rudner, Karsten Flensberg, and G. Burkard, Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator, Phys. Rev. Lett. 108, 206811 (2012)
    DOI: 10.1101/PhysRevLett.108.206811

2011

  • A. Pályi and G. Burkard, Disorder-mediated electron valley resonance in carbon nanotube quantum dots, Phys. Rev. Lett. 106, 086801 (2011)
  • J. Hildmann, G. Burkard, Phys. Rev. B 84, 205127 (2011)

2010

  • L. Chirolli, G. Burkard, S. Kumar, and D. P. DiVincenzo, Superconducting resonators as beam splitters for linear-optics quantum computation, Phys. Rev. Lett. 104, 230502 (2010)
  • H. Ribeiro, J. R. Petta, and G. Burkard, Harnessing the GaAs quantum dot nuclear spin bath for quantum control, Phys. Rev. B 82, 115445 (2010)
  • A. Pályi and G. Burkard, Spin-valley blockade in carbon nanotube double quantum dots, Phys. Rev. B 82, 155424 (2010)

2009

  • A. Pályi and G. Burkard, Hyperfine-induced valley mixing and the spin-valley blockade in carbonbased quantum dots, Phys. Rev. B 80, 201404(R) (2009)
  • H. Ribeiro and G. Burkard, Nuclear state preparation via Landau-Zener-Stückelberg transitions in double quantum dots, Phys. Rev. Lett. 102, 216802 (2009)

2007

  • B. Trauzettel, D. V. Bulaev, D. Loss, G. Burkard, Spin qubits in graphene quantum dots, Nature Phys. 3, 192 (2007)