Project B08: Nature Photonics 2017

Sub-cycle optical phase control of nanotunnelling in the single-electron regime

The high peak electric fields provided by single-cycle light pulses can be harnessed to manipulate and control charge motion in solid-state systems, resulting in electron emission out of metals and semiconductors or high harmonics generation in dielectrics. These processes are of a non-perturbative character and require precise reproducibility of the electric-field profile.
Here, we vary the carrier-envelope phase of 6-fs-long near-infrared pulses with pJ-level energy to control electronic transport in a laterally confined nanoantenna with an 8 nm gap. Peak current densities of 50 MA cm–2 are achieved, corresponding to the transfer of individual electrons in a half-cycle period of 2 fs. The observed behaviours are made possible by the strong distortion of the effective tunnelling barrier due to the extreme electric fields that the nanostructure provides and sustains under sub-cycle optical biasing. Operating at room temperature and in a standard atmosphere, the performed experiments demonstrate a robust class of nanoelectronic switches gated by phase-locked optical transients of minute energy content.

Tobias Rybka, Markus Ludwig, Michael F. Schmalz, Vanessa Knittel, Daniele Brida, and Alfred Leitenstorfer
Nature Photonics, online on 19-09-2016

doi:10.1038/nphoton.2016.174

Press release of the University of Konstanz